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ABSTRACT

Robustly tracking moving objects in video sequences is one
of the key problems in computer vision. In this paper we intro-
duce a computationally efficient nonlinear kernel learning strategy
to find a discriminative model which distinguishes the tracked ob-
ject from the background. Principal Component Analysis and Lin-
ear Discriminant Analysis have been applied to this problem with
some success. These techniques are limited, however, by the fact
that they are capable only of identifying linear subspaces within
the data. Kernel based methods, in contrast, are able to extract
nonlinear subspaces, and thus represent more complex character-
istics of the tracked object and background. This is a particular
advantage when tracking deformable objects and where appear-
ance changes due to the unstable illumination and pose occur. An
efficient approximation to Kernel Discriminant Analysis using QR
decomposition proposed by Xiong et al. [1] makes possible real-
time updating of the optimal nonlinear subspace. We present a
tracking method based on this result and show promising experi-
mental results on real videos undergoing large pose and illumina-
tion changes.

1. INTRODUCTION

Robust appearance-based tracking of targets in video has attracted
extensive research effort due to its wide range of potential appli-
cations, including, for example, video surveillance and human-
machine interaction. One of the major problems affecting the per-
formance of visual tracking systems has been the lack of suit-
able appearance models. For particle filtering based tracking al-
gorithms, the equivalent problem is to find sufficiently robust like-
lihood models.

Due to the nature of visual tracking, occlusions and varia-
tions of the environment’s illumination, the targets’ pose etc. are
inevitable. These dynamic components make adaptive observa-
tion models imperative. While the use of linear subspace models
such as Principal Component Analysis (PCA) and Linear Discrim-
inant Analysis (LDA) algorithms can improve the tracker’s relia-
bility [2–4], we argue that nonlinear kernel methods such as Ker-
nel Discriminant Analysis (KDA) are more suitable for separating
the target from the background. The additional flexibility of KDA
comes at a computational cost. The application of the method of
Xiong et al. [1] reduces the computational burden of estimating
a nonlinear subspace to the extent that the extra discriminatory
power is well justified for tracking.

We present here a probabilistic Monte Carlo sampling based
tracking algorithm. Instead of using colour (e.g. [5]) or contour

features (e.g. [6]) to represent the target for tracking, we adap-
tively learn a subspace to represent the tracked object (as in [2–4]).
Knowing the states x1:t−1 of the tracked object from time 1 to t−1
and under the Markovian assumption, we sample the states from
the prior p(xt|xt−1). After computing the likelihood p(zt|xt)

1

for each sample, we find a Maximum A Posteriori (MAP) estimate
for the current state xt.

Related work. It can be difficult to maintain reliable track-
ing performance over longer sequences with fixed target and back-
ground models because it is not possible to reflect the changes in
appearance that inevitably occur. Many solutions to this problem
have been proposed. Wu et al. have suggested switching observa-
tion models when tracking object contours [7]. The main limita-
tion of their approach is that the switching process is determined a
priori using a finite state machine. For colour feature based track-
ing, in [8], a method is proposed for evaluating multiple colour
features during tracking, and for selecting the set of most discrim-
inative features to improve tracking performances. Jepson et al.
propose an elaborate mixture appearance model with an online
EM updating algorithm in which the changes in image observa-
tions can be robustly adapted [9].

Object tracking with subspace models has been well studied
[2]. Recently this topic has received renewed attention. In [3] an
incremental PCA based tracker is presented. The method learns
eigenspace representations online to reflect appearance changes of
the observations. In [4], instead of using PCA (as in [3]), proba-
bilistic LDA models are proposed to separate the target from the
background. Compared with PCA models, LDA is a discrimina-
tive method and it utilises the background appearance as negative
training data, thereby boosting the tracking performance.

However the abovementioned subspace methods are all linear
and based on second-order statistics of the image set. Kernel sub-
space methods provide a more powerful image model that takes
higher-order statistics into account. Better results obtained by ker-
nel subspace methods have been reported over conventional sub-
space methods in various vision applications (e.g. [10–12]). One of
the most relevant work to ours is in [12] where the authors explore
the application of KDA to frontal face detection and promising ex-
perimental results are reported.

Replacing LDA with KDA for visual tracking requires that the
added computational burden not be so large as to prevent real-time
performance. The computational complexity of the conventional
KDA is O(`2d + `3) where ` is the training data size, d is the
dimension of the data, and c is the number of classes [13]. This
makes conventional KDA infeasible for real-time applications with
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x and z are states and observations respectively.
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large training data. Recently Xiong et al. have developed a novel
KDA algorithm based on QR decomposition [1], which is much
more efficient while maintaining classification accuracy. Its com-
plexity is only O(`dc). By contrast, the complexity of PCA is
O(`2d). We adopt this efficient KDA to update the learned sub-
space every several frames while tracking.

Our approach. The method we propose in this paper bears
some similarity to the work in [4]. However, we use efficient Ker-
nel Discriminant Analysis which has proven better than conven-
tional LDA as visual representations in recognition and detection.
Schematically, our tracking algorithm is quite simple. The key
of the algorithm is to learn subspace representations with efficient
KDA. At time t, given a set of positive and negative (background)
examples, a discriminative analysis is performed to obtain sub-
space representations for the target object. The positive examples
might be the successful tracking results for t = 1 . . . t−1 or some
previously collected training data. From the viewpoint classifica-
tion, the estimated subspace maximises the margin between the
target object class and the background class. Of course we might
also be able to cast this learning as a probabilistic process, similar
to [4, 14]. The details are presented in the following section.

The remainder of this paper is structured as follows. In Section
2 we present the details of the tracking algorithm. We shall focus
on how to update the nonlinear subspace. In Section 3 we show
the robustness of the algorithm through real video tracking under
large pose and lighting variations. In the last section, we draw
concluding remarks as well as possible future research issues.

2. PROBABILISTIC TRACKING ALGORITHM VIA
KERNEL DISCRIMINANT LEARNING

In this section, we describe the specific components of our tracking
framework. We first introduce the probabilistic tracking model.
Then, for the sake of the completeness, we briefly review the KDA
algorithm. The subspace update strategy is also discussed.

The entire tracking algorithm is a simplified variant of the
well-developed Bayesian filtering tracking algorithm [6]. At each
time frame t, we have the observations zt, together with the pre-
vious states x1:t−1, the task is to infer the latent state xt. Usually
it is difficult to accurately estimate the system dynamics model
p(xt|x1:t−1). Therefore in this work a Gaussian random walk is
adopted, i.e.

p(xt|x1:t−1) = N (xt;xt−1,Σt) (1)

where N (·;µ,Σ) denotes a Gaussian distribution with mean µ
and covariance Σ. This distribution is actually the prior for the
inference at time t. According to Bayes’ rule, p(xt|zt,x1:t−1) ∝
p(zt|xt)p(xt|x1:t−1).

Following the Monte Carlo sampling philosophy, we draw N

particles x
(n)
t (n = 1 . . . N ) from the Gaussian prior. Each parti-

cle represents the possible position, posture and size of the target.
We then evaluate each particle’s likelihood p(zt|x

(n)
t ). Instead of

gaining a Minimum Mean Square Error (MMSE) estimate of the
posterior as in the particle filters, we compute an MAP estimate
x?

t = arg max
x
(n)
t

p(z|x(n)
t ). After the state x?

t is determined,

the corresponding observation z?
t will be regarded as a positive ex-

ample of the target. Those particles with large likelihood but away

from x?
t will also be stored as a negative example. This training

data selection strategy is identical as in [4]. The major differences
are the subspace learning and updating strategies.

Kernel Discriminant Learning. PCA and LDA are limited
by their nature to linear projections of the data while KDA is non-
linear discriminating tool using kernel-based techniques. PCA and
LDA can be seen as assuming the noise in the data exhibits a
Gaussian distribution, which is very restrictive. Let A ∈ IR

d×`

denote the training data matrix which contains ` column vectors
ai ∈ IR

d. The size of the i-th class is denoted as `i. We can
relax the Gaussian assumption by an appropriate nonlinear map-
ping from the original space to the feature space φ : IR

d → IR
D ,

A → φ(A) such that the mapped data follows a Gaussian in the
high-dimensional feature space.2 By employing the kernel trick,
we can avoid the the explicit knowledge of the nonlinear mapping.
Specifically, in order to calculate the inner product directly in the
input space, a Mercer kernel k(ai, aj) = φ(ai)

>φ(aj) is intro-
duced. In this paper, a Gaussian RBF kernel (up to an irrelevant
multiplicative constant)

k(ai,aj) = exp

„

−
‖ai − aj‖

2

2σ2

«

is used, where σ is the bandwidth parameter and ‖·‖ denotes L2

norm.
AS in the linear case, the KDA is written as an optimisation

problem [13]

(Pφ)? = arg max
Pφ∈IRD

 

(Pφ)>S
φ

b Pφ

(Pφ)>S
φ
wPφ

!

. (2)

The difference is that both of the between- and within-scatter ma-
trices S

φ

b , Sφ
w are calculated in the feature space. And the projec-

tion Pφ lies in the feature space as well. Eventually we arrive at
an equivalent eigen-decomposition problem. See [13] for an ex-
planation of how the kernel trick may be applied to reformat the
optimisation. Two main drawbacks of the algorithm in [13] exist.
Namely, it is unstable for sample training data applications and the
computational load is large.

The method presented here employs an improved QR decom-
position based KDA which is developed in [1]. The algorithm is
divided into two stages. The first stage maximises the separation
between different classes in the feature space via QR decompo-
sition. At the second stage, the within-class distance is then be
minimised. The core of the algorithm is given in the Appendix.
Observing that the centroid of each class in the input space maps
very close to the centroid in the feature space, the complexity of
the KDA algorithm is reduced to O(`dc) [1]. See [1] for technical
details and the computational complexity analysis.

Appearance update. In order to capture the change in ap-
pearance of foreground and background, both the training images’
projections and the subspace representation need to be updated af-
ter a reasonable tracking duration. Suppose that at frame t, the
tracker replaces the old training data with the positive and nega-
tive examples collected in the past t − 1 frames. Thus at most
2` training data need to be stored by the tracker. Then the KDA
learning process is re-run to learn a new subspace.

2Typically D À d, and D could be infinite.



− Initialisation:
Initialise the tracker. For face tracking, a face detec-
tor might be applied. Collect ` training data and learn
a kernel subspace with KDA a priori. Select a tem-
plate appearance a+? and calculate its kernel projection
(Pφ)>φ(a+?) using Equation (6). Set t = 1.

− Sampling:
Sample N particles x

(n)
t , n = 1 · · ·N from the prior

p(xt|xt−1). p(xt|xt−1) is a Gaussian expressed in
Equation (1).

− State inference:
Estimate the state x?

t using Equations (4) and (5).
− Subspace and appearance update:

For the interval of F frames, collect positive obser-
vations {a+

1 , . . . ,a+
F } as well as negative observations

{a−

1 , . . . ,a−

F }. Replace the 2F most “old” training data
in the total ` training examples. Run Kernel Discriminant
Analysis to update the subspace. Re-select the template
appearance image.

− Set t = t + 1. Go to the Sampling step to process the
next frame.

Figure 1: The KDA based tracking algorithm.

The template update process requires the determination of the
subspace which best encapsulates the `+ positive training exam-
ples {a+

1 , . . . ,a+
`+

} from the previous tracking results. A simple
treatment is to select the image from the training set according to
the following criterion in the feature space:

a
+? = arg min

i∈[1,`+]

0

@

`+
X

f=1

‖(Pφ)>φ(a+
f ) − (Pφ)>φ(a+

i )‖2

1

A .

(3)
This criterion ensures the minimal total projection error between
a+? and the positive training examples. While Equation (3) is
computationally expensive, we can use an approximation in the
input space. Towards this goal we seek a+∗ which is closest to
the geometric centroid of the positive training examples. We know
that the centroid of each class in the input space maps close to
the centroid in the feature space [1]. The a+? which satisfies the
criterion (3) is also closest to the centroid in the feature space.
Therefore a+∗ is an approximation of the optimal a+?.

This update process can be run at every F frames. The val-
ues for F and ` affect the efficiency and robustness of the tracking
algorithm. Theoretically the smaller the value of F , the better the
tracking performance, although at the cost of being more computa-
tionally demanding. It is always a trade off between the efficiency
and robustness. The selection of an optimal ` is not straightfor-
ward. The value of ` should not be so large as to cause the use
of too many observations from past frames. Too many examples
irrelevant to the current observation will increase the probability
of contaminating the current appearance model with “outliers”.

Tracking algorithm. We represent the location of tracked ob-
ject by a state vector x = (x, y, sx, sy, θ), which determines a
rectangular window in image space. x and y denote the centroid
of the rectangle, sx, sy the width and length, and θ the orientation
angle. The image content of each window, determined by a sample

particle x
(n)
t , is down-sampled to an image of fixed size in order

to perform the subspace learning with the image observation. The
kernel projection (Pφ)>φ(z

(n)
t ) is obtained using Equation (6).

The L2 distance in the projected feature space is

d
(n)
t = ‖(Pφ)>φ(z

(n)
t ) − (Pφ)>φ(a+?)‖. (4)

The likelihood probability is modelled as a Gaussian process as
in [5], i.e., p(z|x(n)

t ) ∝ exp
“

−ρ · (d(n)
t )2

”

, where ρ is a positive
constant. It is easy to verify that

x
?
t = arg max

x
(n)
t

p(z|x(n)
t ) = arg min

x
(n)
t

d
(n)
t . (5)

A disadvantage of this proposed algorithm is that the dimen-
sion of the discriminant space constructed by the KDA is limited to
2 for two-category classification. Thus the discrimination power is
somewhat deteriorated. A higher dimensional discriminant space
is obtained by a naı̈ve remedy. We simply introduce multiple non-
target classes. A more elegant modification to the KDA algorithm
for solving this problem in the application of face detection has
been proposed in [15].

To summarise, the KDA based tracking algorithm is depicted
in Figure 1.

3. EVALUATION

Due to the space limit, we report an experiment on real video
sequences to test the proposed tracker’s capability on accurately
tracking the object position and updating the appearance model.

Several frames from a real video sequence taken in an office
environment are shown in Figure 23. The resolution of the video is
320 × 240 and it is sampled at 30 frames per second. We use 500
particles in the experiment. The covariance matrix of the Gaus-
sian distribution for the prior transition is determined empirically.
Two free parameters involved in the KDA algorithm are σ for RBF
kernel and δ for regularisation. We choose σ = 230 and δ = 0.10.

Figure 2: Tracking a human face undergoing large pose variations.
The frame number are 3, 30, 40, 50, 61, 200 respectively.

Our tracking algorithm can successfully track the human face
undergoing large pose variations. The object location in the first

2For clarity we still use the symbol zt to represent the re-sampled image
observation.

3This video is courtesy of David Ross.



frame is manually initialised and the KDA learning is based on
several frames at the beginning of tracking and then it is updated.
We update the subspace every 10 frames. We see that the vari-
ation of the tracked object can be captured by the updated KDA
subspace learning, while the fixed subspace tracker can drift easily
during the tracking.

4. CONCLUSION

We have presented a tracking algorithm based on kernel discrimi-
nant subspace learning. The core of the method is an efficient QR
decomposition based KDA algorithm which is suitable for real-
time tracking applications. This efficient KDA allows the flexibil-
ity of nonlinear subspace learning without the prohibitive compu-
tational burden usually associated with such methods. Preliminary
tests show that the algorithm performs well but more extensive
testing is necessary.

Appendix
The basic procedure of the QR decomposition based KDA is as
follows.

− Compute the centroid matrix Cφ in the feature space, which
contains the geometric centres of each class.

− Construct the kernel matrix K, where Kij = k(ai,aj).
Then (Cφ)>(Cφ) = M>KM. The i-th column of M is
defined as (0, · · · , 0, 1

`i
, · · · , 1

`i
, 0, · · · , 0)>.

− Calculate Cholesky decomposition of (Cφ)>(Cφ) to ob-
tain Qφ,Rφ.

− Construct
B

φ = (Qφ)>(Sφ

b )(Qφ),

T
φ = (Qφ)>(Sφ

t )(Qφ).

St is the total scatter matrix in the feature space. Note that
both Bφ Tφ need to be calculated by the kernel trick. Refer
to [1] for details.

− Calculate c eigenvectorsλi (i = 1 · · · c) of (Tφ+δI)−1Bφ

where I is an identity matrix and δ is a positive constant. c

is number of classes.
− Define Λφ = [λ1, · · · ,λc] according to the order of de-

creasing corresponding eigenvalues. The final transforma-
tion matrix is Pφ = Cφ(Rφ)−1Λφ. Then given an input
vector z in the original space, the projection is calculated
with the kernel trick,

(Pφ)>φ(z) = (Λφ)>((Rφ)−1)>M
>
K

z
, (6)

where Kz ∈ IR
` and Kz

i = k(ai, z).
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